
R programming, a gentle
introduction
M1 IREF, M1 ROAD
Laurent Bergé
BxSE, University of Bordeaux
Fall 2022

Text manipulation

nowadays, many applications using text data (NLP & ML)

pretty easy to deal with text in R (and usually efficient)

we will see only the most basic (and usually most useful) text
manipulation in R

Character strings in R

3 / 29

To concatenate several character strings (henceforth CS), use paste() :

paste("hi", "everyone")
#> [1] "hi everyone"
godNames = c("Zeus", "Aphrodite")
paste("Hello holy", godNames) # returns a vector
#> [1] "Hello holy Zeus" "Hello holy Aphrodite"

This function takes in several vectors and return one vector.

What's the result of:
paste(c("iphone", "Samsung"), 1:6)

#> [1] "iphone 1" "Samsung 2" "iphone 3" "Samsung 4" "iphone 5" "Samsung 6"

To understand the behavior: remember recycling!

Concatenate strings: Paste

4 / 29

This function can return either scalar or vectors. It has two main
arguments:

1. sep , which is the separator between two CS (default is " ")
2. collapse , if provided, it will glue a vector of CS with the value of
collapse

paste("Hello holy", godNames, collapse = " and ") # 1 CS only
#> [1] "Hello holy Zeus and Hello holy Aphrodite"
paste("Hello holy", godNames, sep = "....") # vector of length 2
#> [1] "Hello holy....Zeus" "Hello holy....Aphrodite"
paste("Hello holy", godNames, sep = "....", collapse = " and ")
#> [1] "Hello holy....Zeus and Hello holy....Aphrodite"

The behavior of collapse is:

1. charvec_tmp = paste("Hello holy", godNames, sep =
"........")

2. paste(charvec_tmp, collapse = " and ")

Paste

5 / 29

By default the function paste concatenates with a space between the
character elements:

paste("20", "22")
#> [1] "20 22"

Use paste0 to concatenate with the empty string:

paste0("20", "22")
#> [1] "2022"

I avoids adding the argument sep = "" in paste .

Paste's friend paste0

6 / 29

Let df = iris a copy of the iris data.

Create a unique ID for df observations.

The character ID should be of the form:

[Species name]_[order of appearance].

something that may be useful
table(iris$Species) # frequencies
#>
#> setosa versicolor virginica
#> 50 50 50

Paste: exercise

7 / 29

"Laurent" == "laurent"
#> [1] FALSE
"bergé" == "berge"
#> [1] FALSE
"Laurent, Bergé" == "Laurent Bergé"
#> [1] FALSE

as you can see, although the values convey the same information,
they are treated as different.

when dealing with text data, you first need to format them for
meaningful comparisons.

Formatting character vectors

8 / 29

To convert to ASCII, easiest way is to use iconv() :

iconv("Laurent Bergé, €™", to = "ASCII")
#> [1] NA
iconv("Laurent Bergé, €™", to = "ASCII//IGNORE")
#> [1] "Laurent Berg, "
iconv("Laurent Bergé, €™", to = "ASCII//TRANSLIT")
#> [1] "Laurent Berge, ?T"

argument to defines the bahavior of iconv :

1. "ASCII" defines the encoding target. By default, if non ACII character
is encounters: full value is NA .

2. "IGNORE": if a non ASCII is met, it is deleted.
3. "TRANSLIT": if a non ASCII is met, it is replaced with an "equivalent"

letter -- or a question mark if no equivalent is found.

Converting to ASCII

9 / 29

foxDog = "The Brown Fox Jumps Over The Lazy Dog"
tolower(foxDog)
#> [1] "the brown fox jumps over the lazy dog"
toupper(foxDog)
#> [1] "THE BROWN FOX JUMPS OVER THE LAZY DOG"

Formatting: lower/upper

10 / 29

to extract a subset of a CS:
substr(foxDog, start = 1, stop = 13)
#> [1] "The Brown Fox"
substr(foxDog, 26, nchar(foxDog))
#> [1] "The Lazy Dog"

You can apply it directly to vectors
substr(rep(foxDog, 2), c(1, 26), c(13, nchar(foxDog)))
#> [1] "The Brown Fox" "The Lazy Dog"

Extracting substrings

11 / 29

To split a CS, use strsplit() :

strsplit(foxDog, split = "Jumps Over")
#> [[1]]
#> [1] "The Brown Fox " " The Lazy Dog"

What do you notice?

1. The splitting character disappeared
2. It returns a list! What's the logic?

Splitting

⇒

12 / 29

It can be applied to vectors:
text = c("Rumble thy bellyful!", "Spit, fire!", "Spout, rain!",
 "Nor rain, wind, thunder, fire are my daughters.")
strsplit(text, split = " ")
#> [[1]]
#> [1] "Rumble" "thy" "bellyful!"
#>
#> [[2]]
#> [1] "Spit," "fire!"
#>
#> [[3]]
#> [1] "Spout," "rain!"
#>
#> [[4]]
#> [1] "Nor" "rain," "wind," "thunder," "fire"
#> [6] "are" "my" "daughters."

you can apply strsplit() to vectors. Since the number of
elements can be varying, returning a list is natural

don't forget brackets, strsplit(text, split)[[1]] , for single CS

Splitting

13 / 29

Let's look at this corpus:

textvec = c("The Brown Fox Jumps Over The Lazy Dog",
 "Nor rain, wind, thunder, fire are my daughters.",
 "When my information changes, I alter my conclusions.")
textvec_split = strsplit(textvec, " ")

recreate a character vector whose elements are the first 4 words of
each text.

Splitting: Exercise I

14 / 29

The file stopwords_en.RData contains English stopwords (common
words usually relating no specific meaning).★

The operator x %in% s asks whether the elements of a vector x belong
to the set s .

5 %in% 1:5
#> [1] TRUE
"bonjour" %in% c("bonjour", "les", "gens")
#> [1] TRUE
c("bonjour", "au revoir") %in% c("bonjour", "les", "gens")
#> [1] TRUE FALSE

Use %in% to recreate the following vector of text without stopwords:

textvec = c("The Brown Fox Jumps Over The Lazy Dog",
 "Nor rain, wind, thunder, fire are my daughters.",
 "When my information changes, I alter my conclusions.")

★: Use the function load to open it.

Splitting: Exercise II

15 / 29

Say you have the following sentence:

The king infringes the law on playing curling.

Task

You want to stem the sentence, i.e. taking off the "ing" to keep only the
root of the words.

Solution?

The function gsub() takes in a character string and replaces a string
pattern with another string.

the arguments are the original order of gsub
gsub(pattern = "jour", replacement = " soir", x = "Bonjour")
#> [1] "Bon soir"

Replacing text within text

16 / 29

So let's stem the sentence with gsub .

Let's suppress all the "ing" :

kingText = "The king infringes the law on playing curling."
gsub(pattern = "ing", replacement = "", x = kingText)
#> [1] "The k infres the law on play curl."

Hmm, this was too strong, infringe became infre , let's give it another
shot:

a space is added after "ing"
gsub("ing ", " ", kingText)
#> [1] "The k infringes the law on play curling."

That's better. But unfortunately new problems pop:

1. curling now is not treated
2. king became k and its meaning is completely lost

Trying gsub

17 / 29

We can easily deal with the two issues with regular expressions!

gsub("([[:alpha:]]{3,})ing\\b", "\\1", kingText)
#> [1] "The king infringes the law on play curl."

Regular expressions are extremely powerful tools to deal with text
data.

Regular expressions are a language per se which takes time to
master, but it's worth it.

Regular expressions can be used in many (all?) programming
languages!

gsub and regular expressions

18 / 29

In this course I'll detail only a few important features.

For more detailed information, look at ?regexp or the many regular
expression tutorials existing.

Regular expressions

19 / 29

In a regex, two backslashes, \\ , are used for special characters.

\\b means the end of a word, a word consisting of a succession of
letters or digits.

gsub("ing\\b", "", kingText) # now works for "curling."
#> [1] "The k infringes the law on play curl."

regex: Special flags

20 / 29

The special argument [] means: any character that matches what's
inside the brackets.

gsub("[aeiouy]", "_", kingText)
#> [1] "Th_ k_ng _nfr_ng_s th_ l_w _n pl___ng c_rl_ng."

Any vowel is replaced with "_".

The special argument [:alpha:] works only inside brackets and
means all the alphabet:
[[:alpha:]] is equiv. to
[abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ]

regex: The square brackets

21 / 29

gsub("[[:alpha:]]", "_", kingText)
#> [1] "___ ____ _________ ___ ___ __ _______ _______."

Only non-letters are not replaced (the space and the point).

Other examples are [:digit:] and [:punct:] .

You can put anything you want in the brackets argument: e.g.
[[:punct:]123] to match any punctuation, space or digits from 1
to 3.

regex: Predefined elements

22 / 29

When you want a pattern to be matched several times:

1. {a, b} means: previous pattern appears at least a times and at
most b times

2. + means: previous pattern appears at least once (equiv. {1, })
3. * means: previous pattern appears 0 or more times (equiv. {0,
})★

Question

What does the following do?

gsub("\\b[[:alpha:]]{1,3}\\b", "_", kingText)

gsub("\\b[[:alpha:]]{1,3}\\b", "_", kingText)
#> [1] "_ king infringes _ _ _ playing curling."

★: Yes, this is useful.

regex: Multiple matching

23 / 29

the spacial value ". " means "anything"

Say you want to delete everything after the word king :

gsub("king.+", "king", kingText)
#> [1] "The king"

regex: Anything

24 / 29

as you've seen some characters have a special meaning in regular
expressions, so if you want to match them, you have to escape them
with \\

use "| " to mean OR

text = "[my.text.in.brakets]"
gsub("[", "", text) # error
#> Warning in gsub("[", "", text): TRE pattern compilation error 'M
#> Error in gsub("[", "", text): invalid regular expression '[', re

gsub("\\[", "", text) # OK
#> [1] "my.text.in.brakets]"

gsub("\\[|\\.|\\]", " ", text) # pipe means "or"
#> [1] " my text in brakets "

regex: Escaping and conditions

25 / 29

In the replacement, the special argument \\1 means the first element
that is in between parentheses.

Question

What does that do?

text = "abc123 x22 work 32"
gsub("([[:alpha:]]+)([[:digit:]]+)", "\\2\\1", text)

text = "abc123 x22 work 32"
gsub("([[:alpha:]]+)([[:digit:]]+)", "\\2\\1", text)
#> [1] "123abc 22x work 32"

regex: Dynamic replacements

26 / 29

With all our new knowledge, you now understand how this works:

gsub("([[:alpha:]]{3,})ing\\b", "\\1", kingText)
#> [1] "The king infringes the law on play curl."

regex: Summing up

27 / 29

Create the following regular expressions:

1. to delete words finishing with a s
2. to drop all terminal s when a word is at least 3 letters long (without

the s).

Test on:

text = "These guys like rhymes."

regex: Exercise

28 / 29

To find out which CS matches the regex, grepl() :

text = c("hello", "folks", "goodbye")
grepl("e", text)
#> [1] TRUE FALSE TRUE

to improve the speed for large vectors: use argument perl = TRUE

other resources:

nice cheat sheet on regular expressions: from Rstudio
the package stringr provides user-friendly version of base R
functions
R's task view on Natural Language Processing for an overview of
many tools regarding NLP

Text in R: Random tips and beyond

29 / 29

https://raw.githubusercontent.com/rstudio/cheatsheets/main/regex.pdf
https://cran.r-project.org/web/packages/stringr/index.html
https://cran.r-project.org/web/views/NaturalLanguageProcessing.html

