
R programming, a gentle
introduction
M1 IREF, M1 ROAD
Laurent Bergé
BxSE, University of Bordeaux
Fall 2022

Data management:

 Example

Q u e s t i o n

Does high tech employment becomes more geographically concentrated over time?

The file “High_tech_Employment_Eurostat.txt”★ contains information on the spatial distribution of high
technology employment in Europe for several years.

The aim of this exercise is to compute the Herfindahl index for each country and year.

For a country and a year , the Herfindahl measures the level of spatial concentration of an activity
and is defined as:

with the share of national employment of country in year located in region .

An Herfindahl of 1 would mean that all employment is concentrated in only one region.

1. Import the data, and keep only observations at the NUTS2 level (roughly the regional level). NUTS2
level is a 4-characters geographical code of the form: XXYY with XX the country code and YY the
NUTS2 code (e.g. FR17). Figure out and deal with data issues.

2. Compute the Herfindahl index for each country and year.
3. Plot the evolution of the Herfindahl for the EU5 (DE, BE, IT, FR, NL).

★: Can be found on my webpage -> teachhing - > R intro

Problem: Herfindahl

c y

hc, y =

nc

∑
i=1

s2
c,y,i

,

sc,y,i c y i

3 / 63

https://meek-parfait-60672c.netlify.app/docs/High_tech_Employment_Eurostat.txt

library(data.table)
base_raw = fread("_DATA/_RAW/High_tech_Employment_Eurostat.txt")

Selection & renaming
base_emp = base_raw[nchar(geo) == 4,
 .(nuts2 = geo,
 year,
 emp = Employment_highTech)]

we zeroe the NAs (ad hoc choice, maybe wrong)
base_emp[is.na(emp), emp := 0]

we create the country
base_emp[, country := substr(nuts2, 1, 2)]

total emp per country-year
base_emp[, emp_total_cy := sum(emp), by = .(country, year)]

share
base_emp[, share := emp / emp_total_cy]

the final Herfindahl DB
base_herf = base_emp[, .(herf = sum(share ** 2)),
 by = .(country, year, emp_total = emp_total_cy

Data cleaning

4 / 63

library(ggplot2)

ctry = c("FR", "BE", "DE", "IT", "NL")

ggplot(base_herf[country %in% ctry],
 aes(x = year, y = herf, col = country)) +
 geom_line() +
 geom_point() +
 theme_minimal()

Graph

5 / 63

Data management with R

All you need is....

 data.table

Data management

7 / 63

import
subset
create simple variables
create complex variables
combine data sets

Outline: data.table

8 / 63

You can import rectangular data sets with fread :

library(data.table)
base_ht_emp = fread("data/High_tech_Employment_Eurostat.txt")
head(base_ht_emp)
#> geo year Employment_highTech
#> 1: AT 2008 161.0
#> 2: AT1 2008 80.6
#> 3: AT11 2008 3.5
#> 4: AT12 2008 34.1
#> 5: AT13 2008 43.0
#> 6: AT2 2008 32.8

The function fread is nice because:

it guesses column types (based on a large random sample of rows)
it guesses the delimiter
it is fast

Importation: data.table

9 / 63

Data management with

data.table

Pros:

memory efficient
very fast
compact syntax

Cons:

annoying startup message
non-explicit intricate syntax
non-standard R syntax

Data management with data.table

11 / 63

Pros:

memory efficient
very fast
compact syntax

Cons:

annoying startup message
non-explicit intricate syntax
non-standard R syntax

You can't have one without the other!

Data management with data.table

12 / 63

library(data.table)
dt = data.table(id = c("Mum", "Dad"), value = 1:2)
dt
#> id value
#> 1: Mum 1
#> 2: Dad 2

From existing data.frames:

df = iris[, 1:3] # new DF
dt = df
setDT(dt) # change the type to DT without recreating it in memory
dt = as.data.table(iris) # creates a copy

Creating a data.table

13 / 63

DT[i, j, by]

i: row index j: column index/values by: aggregation

You can do most of what you need in data management with just that!

data.table syntax

14 / 63

In a data.table , you don't need a comma after the index to select rows
(differently from data.frames).

set.seed(1)
df = iris[sample(150, 5), c(1,5)]
dt = as.data.table(df)

dt[i] is +/- equivalent to df[i,]
dt[1]
#> Sepal.Length Species
#> 1: 5.8 versicolor

look at the difference
head(df[1])
#> Sepal.Length
#> 68 5.8
#> 129 6.4
#> 43 4.4
#> 14 4.3
#> 51 7.0

Difference with DF: Row selection

15 / 63

Inside the brackets of a data.table , you need not use character
vectors to reference column names:★

works => NON STANDARD R
dt[, Species]
#> [1] versicolor virginica setosa setosa versicolor
#> Levels: setosa versicolor virginica

does not work => error message
df[, Species]
#> Error in `[.data.frame`(df, , Species): object 'Species' not fou

★: To understand what's going on, see here.

Difference with DF: Column selection

16 / 63

Ordering the DT: use the names of the variables directly:

order(var_name_1, var_name_2, etc) : use directly variable
names
order(var_name_1, -var_name_2) : put a minus in front of a
variable to have a decreasing order

Example

dt = as.data.table(iris)
head(dt[order(Sepal.Length)], 3)
#> Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#> 1: 4.3 3.0 1.1 0.1 setosa
#> 2: 4.4 2.9 1.4 0.2 setosa
#> 3: 4.4 3.0 1.3 0.2 setosa

decreasing order
head(dt[order(Species, -Sepal.Length)], 3)
#> Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#> 1: 5.8 4.0 1.2 0.2 setosa
#> 2: 5.7 4.4 1.5 0.4 setosa
#> 3: 5.7 3.8 1.7 0.3 setosa

Difference with DF: Ordering

17 / 63

Subsetting: use the variables names directly!

dt = as.data.table(iris)
head(dt[Species == "setosa" & Sepal.Length == 5.1])
#> Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#> 1: 5.1 3.5 1.4 0.2 setosa
#> 2: 5.1 3.5 1.4 0.3 setosa
#> 3: 5.1 3.8 1.5 0.3 setosa
#> 4: 5.1 3.7 1.5 0.4 setosa
#> 5: 5.1 3.3 1.7 0.5 setosa
#> 6: 5.1 3.4 1.5 0.2 setosa

It is equivalent to:

df = iris
head(df[df$Species == "setosa" & df$Sepal.Length == 5.1,])
#> Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#> 1 5.1 3.5 1.4 0.2 setosa
#> 18 5.1 3.5 1.4 0.3 setosa
#> 20 5.1 3.8 1.5 0.3 setosa
#> 22 5.1 3.7 1.5 0.4 setosa
#> 24 5.1 3.3 1.7 0.5 setosa
#> 40 5.1 3.4 1.5 0.2 setosa

Difference with DF: Subsetting

18 / 63

Creating new variables

To create new variables, the syntax is:

dt[, c("vector", "of", "names") := list(stuff1, stuff2,
stuff3)]

dt = as.data.table(iris)
dt[, c("id", "x") := list(1:nrow(dt), Sepal.Length**2)]
head(dt, 3)
#> Sepal.Length Sepal.Width Petal.Length Petal.Width Species id
#> 1: 5.1 3.5 1.4 0.2 setosa 1
#> 2: 4.9 3.0 1.4 0.2 setosa 2
#> 3: 4.7 3.2 1.3 0.2 setosa 3

Keep in mind that this syntax is data.table specific.

Creating new variables: Canonical way

20 / 63

The canonical syntax to create new variables may seem too long:

dt[, c("id", "x") := list(1:nrow(dt), Sepal.Length**2)]

Good news

data.table allows for shorthands!

Creating new variables: Too long syntax?

21 / 63

Canonical call:

dt[, c("id", "x") := list(1:nrow(dt),
 Sepal.Length*

Use . for list :

dt[, c("id", "x") := .(1:nrow(dt),
 Sepal.Length**2)

Use .N :

dt[, c("id", "x") := .(1:.N,
 Sepal.Length**2)

Starters:

you can replace list(stuff) by .(stuff) : yes, a point is a
function

there is an internal variable, which can be summoned with .N ,
reporting the number of observations★

★: The number of observations is context specific, you'll see that later.

Creating new variables: Shorthands

22 / 63

Canonical call:

dt[, "id" := list(1:nrow(dt))]

Remove quotes:

dt[, id := list(1:nrow(dt))]

Use .N :

dt[, id := list(1:.N)]

Remove list :

dt[, id := 1:.N]

When there is only one variable to be created:

you can avoid the quotes in the left side
you can avoid the list in the right side

Creating new variables: Shorthands

23 / 63

When you have 3+ variables to create, this syntax may be error prone
since you need to match the order of the left side to the order of the right
side.

dt[, c("id", "x") := .(1:.N, Sepal.Length**2)]

Good news

data.table allows to create variables differently!

Creating new variables: Clumsy?

24 / 63

Question

Is the following code legit?

"+"(5, 3)

Answer

Sure it is!

"+"(5, 3)
#> [1] 8

Weird, right?

Creating new variables: ":=" is an operator!

25 / 63

Operators

The values + , * , ^ , : , and := (and many others) are operators.

They are special symbols which require values on the left and on the
right to work.

Each of them is in fact associated to a regular function which is defined
in a regular way.★

Something more or less of the form:

operator = function(a, b){ etc }

So operators are in fact regular functions that you can summon like any
other function!

★: To be clear, very often they are not regular functions but methods. But I skip this unnecessary detail.

Operators

27 / 63

Let's create an operator that keeps the first letters of a word.

"%k%" = function(x, n){
 substr(x, 1, n)
}

"bonjour" %k% 3
#> [1] "bon"

And since they're no different from regular functions, you can summon
them just like any function (they're just quoted to avoid a parsing error):

"%k%"("bonjour", 3)
#> [1] "bon"

Operators: Example

n

28 / 63

Canonical call:

dt[, c("id", "x") :=
 list(1:nrow(dt), Sepal.Length**2)]

Functional call:

dt[, ":="(id = 1:.N,
 x = Sepal.Length**2)]

You can use the function ":=" to create variables in the following way:

Creating variables: Functional form

29 / 63

Q: Say you want to modify a variable, but only for some observations.
How do you do?

A: Yes, you've got it! Just use the argument i.

Let's trim large values of Sepal.Length :

dt = as.data.table(iris)
summary(dt$Sepal.Length)
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> 4.300 5.100 5.800 5.843 6.400 7.900

cutoff = mean(dt$Sepal.Length) + 1.5 * sd(dt$Sepal.Length)

dt[Sepal.Length >= cutoff, Sepal.Length := cutoff]
summary(dt$Sepal.Length)
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> 4.300 5.100 5.800 5.812 6.400 7.085

Creating variables: Partial modification

30 / 63

Create a new variable:

dt = data.table(id = letters[1:3],
 x = 1:3)

set(dt, j = "x2", value = dt$x ** 2)
dt
#> id x x2
#> 1: a 1 1
#> 2: b 2 4
#> 3: c 3 9

Note that you cannot use variables by
reference any more, you need explicit values
(here dt$x).

Modify an existing variable:

dt = data.table(id = letters[1:3],
 x = 1:3)

set(dt, c(1L, 3L), j = "id",
 value = c("aa", "cc"))
dt
#> id x
#> 1: aa 1
#> 2: b 2
#> 3: cc 3

Note that 1L , 3L means 1 and 3 in integer
format (otherwise data.table complains).

The function set is specific to data.table and allows to create variables
more programmatically.

The syntax is:

set(dt, i = NULL, j, value)

Creating variables: The function set

31 / 63

Selecting variables

The most basic way is to insert a character vector of variables' names:

dt = as.data.table(iris)
head(dt[, c("Species", "Sepal.Width")], 2)
#> Species Sepal.Width
#> 1: setosa 3.5
#> 2: setosa 3.0

Very weird trick alert

You can negate character strings!

head(dt[, -c("Species", "Sepal.Width")], 2)
#> Sepal.Length Petal.Length Petal.Width
#> 1: 5.1 1.4 0.2
#> 2: 4.9 1.4 0.2

Extraction: Basic way

33 / 63

You can extract and modify the columns of a data.table by using:

dt[, list(newvar1 = fun(oldvars), etc)]

dt = as.data.table(iris)
new_dt = dt[, list(x = Sepal.Length, id = 1:nrow(dt))]
new_dt[1]
#> x id
#> 1: 5.1 1

As usual, shorthands apply:

new_dt = dt[, .(x = Sepal.Length, id = 1:.N)]
new_dt[1]
#> x id
#> 1: 5.1 1

Extraction: Usual way

34 / 63

When you select just one variable, you can omit the list.

This leads to return a vector.

head(dt[, Sepal.Length])
#> [1] 5.1 4.9 4.7 4.6 5.0 5.4

If you want to return a data.table , use a list:

head(dt[, .(Sepal.Length)])
#> Sepal.Length
#> 1: 5.1
#> 2: 4.9
#> 3: 4.7
#> 4: 4.6
#> 5: 5.0
#> 6: 5.4

Extraction: Simplification

35 / 63

Question

Does this work?

var = c("Species", "Sepal.Width")
dt[, var]

Answer

It does not.

var = c("Species", "Sepal.Width")
dt[, var]
#> Error in `[.data.table`(dt, , var) :]
#> j (the 2nd argument inside) is a single symbol but column na

Q: How to make it work?

Using variables' names in vectors

36 / 63

Does not work because the variables ex1 and
ex2 were never created: so we (rightfully) get
an error.

my_list = list(ex1 = 3, ex2 = 5)
ex1 + ex2
#> Error in eval(expr, envir, enclos):

Now works, because we ask the variables ex1
and ex2 to be searched within the list
my_list .

my_list = list(ex1 = 3, ex2 = 5)
with(my_list, ex1 + ex2)
#> [1] 8

In R, you use the function with to attach the variables of a list (usually a
data set) to the "search path", so that it works as if the variables of that
data set were in the current environment.

Base R's with mechanism

37 / 63

Link to data.table

What data.table does is identical to this with mechanism: the
variables' names are directly fetched in the data.

Guess what: the operator [.data.table has a with argument.

Base R's with mechanism: data.table

38 / 63

Let's use the argument with and see what it does:

dt = as.data.table(iris)
var = c("Species", "Sepal.Width")
head(dt[, var, with = FALSE])
#> Species Sepal.Width
#> 1: setosa 3.5
#> 2: setosa 3.0
#> 3: setosa 3.2
#> 4: setosa 3.1
#> 5: setosa 3.6
#> 6: setosa 3.9

Yeah it works!

Using the argument with in data.table

39 / 63

But as usual, there are shorthands. Just add two points before the name
of the variable to indicate to data.table that the variable is not to be
fetched in the data:

var = c("Species", "Sepal.Width")
head(dt[, ..var])
#> Species Sepal.Width
#> 1: setosa 3.5
#> 2: setosa 3.0
#> 3: setosa 3.2
#> 4: setosa 3.1
#> 5: setosa 3.6
#> 6: setosa 3.9

To note

This is a super weird syntax trick, absolutely specific to data.table!

Explaining why it works is out of the scope of this course.1

1: It is thanks to R's meta programming capabilities.

The with argument

40 / 63

Does not work because var is not defined in
dt :

dt = data.table(x = 1:3)
var = c("x2", "x3")
dt[, var := .(x**2, x**3)]
#> Error in `[.data.table`(dt, , `:=`(v

Now works with with = FALSE , although
deprecated:

dt = data.table(x = 1:3)
var = c("x2", "x3")
dt[, var := .(x**2, x**3), with = FALSE
#> Warning in `[.data.table`(dt, , `:=`
#> with=FALSE together with := was depr
#> wrap the LHS of := with parentheses;
#> to column name(s) held in variable m
#> warned in 2014, this is now a warnin
dt
#> x x2 x3
#> 1: 1 1 1
#> 2: 2 4 8
#> 3: 3 9 27

Remember the syntax to create variables? We can also use with =
FALSE .

Using with when creating variables

41 / 63

Does not work because var is not defined in
dt :

dt = data.table(x = 1:3)
var = c("x2", "x3")
dt[, var := .(x**2, x**3)]
#> Error in `[.data.table`(dt, , `:=`(v

And with the shorthand:

dt = data.table(x = 1:3)
var = c("x2", "x3")
dt[, (var) := .(x**2, x**3)]
dt
#> x x2 x3
#> 1: 1 1 1
#> 2: 2 4 8
#> 3: 3 9 27

Remember the syntax to create variables? We can also use with =
FALSE .

Using with when creating variables

42 / 63

Aggregation

What?

Applying operations by groups of observations is one of the most
common data tasks:

average/min/max per country
whatever you want per whatever grouping

How?

This can be done exquisitely easily★ in data.table:

Just use the argument by!

★: Not sure the English is correct, but that's the idea!

Aggregation

44 / 63

To aggregate data according to an identifier:

dt[, list(newvar1 = fun(oldvars), etc), by =
list(identifiers)]

dt = as.data.table(iris)
agg_dt = dt[, list(mean_sl = mean(Sepal.Length),
 n_obs = length(Sepal.Length)),
 by = list(Species)]
agg_dt
#> Species mean_sl n_obs
#> 1: setosa 5.006 50
#> 2: versicolor 5.936 50
#> 3: virginica 6.588 50

Aggregating data by groups

45 / 63

Canonical call:

dt[, list(mean_sl = mean(Sepal.Length),
 n_obs = length(Sepal.Length))
 by = list(Species)]

Using . for list :

dt[, .(mean_sl = mean(Sepal.Length),
 n_obs = length(Sepal.Length)),
 by = .(Species)]

Removing the list in by :

dt[, .(mean_sl = mean(Sepal.Length),
 n_obs = length(Sepal.Length)),
 by = Species]

Using .N :

dt[, .(mean_sl = mean(Sepal.Length),
 n_obs = .N),
 by = Species]

Shorthands (as usual):

list() .()
if only one variable in by= , you can omit list()
.N : the number of observations in the group

Aggregating data: Shorthands

≡

46 / 63

The following data contains trade values in euros from exporting (Origin)
countries to importing (Destination) countries.

install.packages("fixest")
data(trade, package = "fixest")
head(trade)
#> Destination Origin Product Year dist_km Euros
#> 1 LU BE 1 2007 139.5719 2966697
#> 2 BE LU 1 2007 139.5719 6755030
#> 3 LU BE 2 2007 139.5719 57078782
#> 4 BE LU 2 2007 139.5719 7117406
#> 5 LU BE 3 2007 139.5719 17379821
#> 6 BE LU 3 2007 139.5719 2622254

Exercize

Create the table containing the yearly total exportations for each
exporting country.

Aggregate: Exercize

47 / 63

Now say you want to create a new variable:

the max Petal.Length for each variety of flower
but you want to keep the same number of rows! In other words, you want the
original data set with just an extra variable.

Regular way to proceed:

1. you aggregate the data at the species level
2. you merge back the information to the original database

dt = as.data.table(iris)[, 3:5]
agg_dt = dt[, .(max_sl = max(Petal.Length)), by = Species]
res = merge(dt, agg_dt)
looking at some obs
res[c(1:2, 51:52, 101:102)]
#> Species Petal.Length Petal.Width max_sl
#> 1: setosa 1.4 0.2 1.9
#> 2: setosa 1.4 0.2 1.9
#> 3: versicolor 4.7 1.4 5.1
#> 4: versicolor 4.5 1.5 5.1
#> 5: virginica 6.0 2.5 6.9
#> 6: virginica 5.1 1.9 6.9

Creating aggregate variables

48 / 63

But you can do it directly in one line with data.table!

Since it concerns the creation of a new variable, you must use := :

dt[, [character vector of names] := [list of values], by =
list(identifiers)]

We obtain the previous result with a single line:

dt = as.data.table(iris)[, 3:5]
dt[, max_sl := max(Petal.Length), by = Species]
looking at some obs
dt[c(1:2, 51:52, 101:102)]
#> Petal.Length Petal.Width Species max_sl
#> 1: 1.4 0.2 setosa 1.9
#> 2: 1.4 0.2 setosa 1.9
#> 3: 4.7 1.4 versicolor 5.1
#> 4: 4.5 1.5 versicolor 5.1
#> 5: 6.0 2.5 virginica 6.9
#> 6: 5.1 1.9 virginica 6.9

Creating aggregate variables

49 / 63

Remember the trade data:

install.packages("fixest")
data(trade, package = "fixest")
head(trade, 3)
#> Destination Origin Product Year dist_km Euros
#> 1 LU BE 1 2007 139.5719 2966697
#> 2 BE LU 1 2007 139.5719 6755030
#> 3 LU BE 2 2007 139.5719 57078782

create the data set base_export containing the yearly total exports
between each country-pair

add the variable share_export : it represents the Destination
country represents in the yearly total exports of an Origin country.

For example, take France (FR) exports to Germany (DE) in
2010. If share_export = 50 this means that Germany
receives 50% of all France exportations in 2010.

Exercize: Aggregate variables

50 / 63

selecting observations
selecting an modifying variables
creating new variables
creating aggregated measures

It's about 80% of your data management journey. The other 18% is
merging.

data.table: Summing up

51 / 63

Combining data sets

Merging is the bread and butter of data management, most important
and recurring operation.

First let's define data:

dtx = data.table(id = c("Al", "Jil", "Pablo", "Jules"))
dtx$performance = 1:4
dty = data.table(id = c("Al", "Francis", "Myriam"))
dty$age = c(34, 52, 29)
dtx
#> id performance
#> 1: Al 1
#> 2: Jil 2
#> 3: Pablo 3
#> 4: Jules 4
dty
#> id age
#> 1: Al 34
#> 2: Francis 52
#> 3: Myriam 29

Merging different sets of information

53 / 63

Merging is an operation that combines information from different
sources for a set of identifiers.

In our example we have a performance variable in table dtx and an
age variable for table dty.

In both tables, the information is unique for a given id.

As we can see, the information is not exhaustive: Al is the only id to be
in both tables.

Merging

54 / 63

You have 4 types of merging operations:

1. inner join: only the identifiers that are present in both tables are kept.
2. left join: all identifiers from the first table are kept. Information on

identifiers of the second table that are not present in the first table
are dropped.

3. right join: explicit, same logic as left join
4. outer join: All the information is kept. No identifier is lost.

Merging

55 / 63

This translates to the function merge() with the explicit:

1. inner join: default
2. left join: all.x = TRUE
3. right join: all.y = TRUE
4. outer join: all = TRUE (equiv. all.x = TRUE & all.y = TRUE)

Merging

56 / 63

merge(dtx, dty) # inner join
#> id performance age
#> 1: Al 1 34
merge(dtx, dty, all.x = TRUE) # left join
#> id performance age
#> 1: Al 1 34
#> 2: Jil 2 NA
#> 3: Jules 4 NA
#> 4: Pablo 3 NA
merge(dtx, dty, all.y = TRUE) # right join
#> id performance age
#> 1: Al 1 34
#> 2: Francis NA 52
#> 3: Myriam NA 29

Merging: Examples

57 / 63

merge(dtx, dty, all = TRUE) # outer join
#> id performance age
#> 1: Al 1 34
#> 2: Francis NA 52
#> 3: Jil 2 NA
#> 4: Jules 4 NA
#> 5: Myriam NA 29
#> 6: Pablo 3 NA

Merging: Examples

58 / 63

dtx = data.table(id = c("Al", "Al",
 "Pablo", "Jule
 performance = 1:4)
dtx
#> id performance
#> 1: Al 1
#> 2: Al 2
#> 3: Pablo 3
#> 4: Jules 4

dty = data.table(id = c("Al", "Al",
 "Myriam"),
 age = c(34, 52, 29))
dty
#> id age
#> 1: Al 34
#> 2: Al 52
#> 3: Myriam 29

Quest ion

What happens if?

merge(dtx, dty, by = "id")

Answer

merge(dtx, dty, by = "id")
#> id performance age
#> 1: Al 1 34
#> 2: Al 1 52
#> 3: Al 2 34
#> 4: Al 2 52

Merging: Question

59 / 63

When merging data tables, there is a check for Cartesian product to
avoid performing a very costly operation by mistake.

You can bypass this with the argument allow.cartesian .

dta = as.data.table(iris)[, .(Petal.Length, Species)]
dtb = as.data.table(iris)[, .(Sepal.Width, Species)]
dtab = merge(dta, dtb, by = "Species") # cartesian product => BLOCKED!
#> Error in vecseq(f__, len__, if (allow.cartesian || notjoin || !anyDuplic

now works => look at the size of the resulting data set!
iris is 150 obs, 3 species of 50 obs.
after merge we get: 3 * 50**2 obs.
dtab = merge(dta, dtb, by = "Species", allow.cartesian = TRUE)
dim(dtab)
#> [1] 7500 3

Merging: Cartesian product

60 / 63

You can use argument by to merge with identifiers of different names.

dtz = dty
names(dtz)[1] = "ID" # changing the name
merge(dtx, dtz, by.x = "id", by.y = "ID")
#> id performance age
#> 1: Al 1 34
#> 2: Al 1 52
#> 3: Al 2 34
#> 4: Al 2 52

However I strongly discourage that.

Better keeping consistent variable names across tables right from the
start of a project. But it can be useful.

Of course an identifier can consist of more than one variable (e.g. in a
panel it can be individual identifier + year identifier).

Merging: Keys of different names

61 / 63

Let's consider patent data from the USPTO. We want to count the number
of times each patent gets cited by other patents.

Based on the text files:

uspto_sample.tsv
uspto_cites.csv

Create a table looking as follows:

with nb_cites the number of times patent identified by patent_id in
uspto_sample.tsv has been cited by the patents in uspto_cites.csv .

Exercise: Citation counts

62 / 63

The material we've just seen should take you a very long way!

However this was just an introduction: you can do many more things
with data.table!

data.table's website
batch manipulation of variables with .SD

Going further

63 / 63

https://rdatatable.gitlab.io/data.table/
https://rdatatable.gitlab.io/data.table/articles/datatable-sd-usage.html

