
R programming, a gentle
introduction
M1 IREF, M1 ROAD
Laurent Bergé
BxSE, University of Bordeaux
Fall 2022

Your choice:

proceed with the introduction
skip to the main outline

2 / 142

Laurent Bergé
Assistant Prof., BxSE, Univ. of Bordeaux
 @lrberge
 laurent.berge@u-bordeaux.fr

Who am I?

3 / 142

https://twitter.com/lrberge
mailto:laurent.berge@u-bordeaux.fr

My fields
Applied economics (Data + methods)
Economics of Innovation (Large data)
(a bit of) Statistics (Computational methods)

What do I do?

=
=

=

4 / 142

The story

I've met R during my master in
2010
since then... it's a love story

The outcome of our
relationship

7 packages, 6 of which are
public
the packages cover:

econometrics
data handling
statistical models
package development
graphics

R and me

5 / 142

it is free

it is a programming language (e.g. Stata), which includes: a
coherent & smart syntax, loops and conditions you do not need
more!

extremely easy integration of low level languages as C++ (Rcpp,
cpp11)

it has a super (super) smart IDE (Rstudio)

Why R?

≠
⇒

6 / 142

https://cran.r-project.org/web/packages/Rcpp/index.html
file:///C:/Users/berge028/Google%20Drive/TEACHING/2022-2023%20--%20M1%20remediation%20R/website_R_M1IREF/docs/M1_R-intro_01.html

Cons
Many functionalities depend on user-created functions quality
control depends on the goodwill (and time) of the programmer

It is not "point and click" bigger learning cost

Pros and Cons

⇒

⇒

7 / 142

Pros
huge active community many answers to your questions around

you can easily code whatever you want (great for simulation and
complex data management)

it has some very (very) smart and convenient coding features

very well integrated document authoring system with Rstudio: to
create webpages, reports, presentations

Shiny:
https://trackingpatentconcepts.shinyapps.io/shiny_diffusionApp/

you can create your own packages easily

Pros and Cons

⇒

8 / 142

https://trackingpatentconcepts.shinyapps.io/shiny_diffusionApp/

Where is this course?

9 / 142

Where is this course?

10 / 142

Where is this course?

11 / 142

A programming language is really a language:

words (thousands of functions to know),
grammar (specific syntax),
style ("good" vs "bad" code).

Language

12 / 142

This course will strive to:
give you the keys to programming in R
help you to manage data efficiently
make OK graphs

Aim

13 / 142

1. Basic R programming

2. Data management

3. Statistics (basic)

4. Graphics

Outline

14 / 142

Basic R programming

A big calculator

1 + 1
#> [1] 2
sqrt(4)
#> [1] 2
exp(log(2))
#> [1] 2
2**2
#> [1] 4
2^2
#> [1] 4
pi
#> [1] 3.141593

What R is

16 / 142

A programming Language

loops

conditions

coherent syntax

smart function definition

What R is

17 / 142

R likes vectors and matrices:

Easy & efficient handling of matrix operations think matrices!

What R is

⇒

18 / 142

Every user-level function is documented. The quality of the
documentation depends on the author of the function though.

type ?function to get the help page of the function

What if I need help?

19 / 142

Rule 1

The syntax rules you shall obey, there is no other way.

In concrete terms:

R is case sensitive x1 is different from X1 and they will be treated
as two different variables

every symbol has a specific meaning: You shall not use a
parenthesis for a bracket!

everything open must be closed (paren./bracket)

1 line = 1 instruction. And nothing more!

use one character sign for another and the code will break

Syntax in R

⇒

(≠ {≠[

20 / 142

Rule 2

Most errors are syntax errors.

Rule 3

If you think you have found a bug in the software, please refer to Rule
2.

Syntax in R: The two other rules of programming

21 / 142

If you knew R before this course, you must have heard of the tidyverse .

This is a set of functions, for data management and much more, created by talented
developers which changed the R paradigm by focusing on user-friendliness.

The problem

tidyverse introduced a lot of non-standard evaluation to make the typing much lighter
and intuitive.

The tradeoff is that it increased the complexity to program with it.☆

And if you're starting with R, it will give you terrible habits and expectations; and you won't be
able to understand non-tidyverse users' code!

Before using non-standard evaluation, you should first properly understand what standard
evaluation is!

☆: It's a bit like Stata: best-in-class for end-users, but as regards programming.. I wouldn't recommend it!

A word of caution: This course is not about tidyverse

22 / 142

Programming 001:

 functions, a refresher

input function output

exp(2)
#> [1] 7.389056

exp() is a (simple) function that takes only one numeric argument
as input and gives one numeric output:
2 exp 7.389056

While there can be multiple arguments as inputs, the output must be
a unique object!

round(pi, 2)
#> [1] 3.14

Here the function round() takes two arguments as inputs:
 round 3.14

What is a function?

⟶ ⟶

⟶ ⟶

(pi, 2)⟶ ⟶

24 / 142

To call a function: function_name(arg1, arg2,, argN)
Each argument has a name:

round(x = pi, digits = 1)
#> [1] 3.1

You can omit the argument names: if so R automatically inserts
argument names following the function's definition order.

round(pi, 1)
#> [1] 3.1
round(digits = 1, pi)
#> [1] 3.1

When arguments have default values, you can omit them:

round(pi)
#> [1] 3
round(pi, 4)
#> [1] 3.1416

Functions in R

25 / 142

R typing is dynamic: you don't have to declare an object before
creating it (contrary to c)
To assign a value to a variable use either: "= " or "<- "

x = 2
x <- 2

There is a slight difference between the two methods (I'll come back
to it later)
Please use "= ", like in any other programming language★

★: There is no objective reason, except fad and custom (if you think they are objective), to use <- .

Assignation

26 / 142

R Programming 101

Google is your fr iend

By googling on the internet, you can quickly find code snippets to do
quite complex analysis. ML, spatial analysis, you name it.

Even if you're a bloody beginner.

The problem of this fr iend

What's the point of "knowing" how to do complex things if you don't
know how to do basic things?

This will generate a lot of frustration when you'll want to perform
simple things (export/loop/select/etc).

My plot, revealed

OK, in fact I just wanted to motivate a very tedious outline in the next
slide! ;-)

Is your friend your friend?

28 / 142

What we' l l cover

vectors

matrices

lists

data frames

What we' l l see on the way

subsetting (vec, mat, list, df)

loops and conditions

writing functions

R pitfalls (recycling, factors)

Q: Does this look tedious? A: Absolutely!

Q: Is this necessary? A: Nope, indispensable!

R: The stuff you just must know

29 / 142

Vectors

To create a vector, use the function c() :

x = c(1, 5, 6)
x
#> [1] 1 5 6

You can also create vectors of character strings:

s = c("bonne", "nuit", "les petits")
s
#> [1] "bonne" "nuit" "les petits"

You can add elements to an existing vector with c() :

y = c(x, 8, 9)
y
#> [1] 1 5 6 8 9

Basic types - Vectors

31 / 142

There are some tools to create regular vectors:

1. the colon ": "

2. rep()

3. seq()

Regular vectors

32 / 142

Use a colon to create sequences of integers with unitary increments:

1:5
#> [1] 1 2 3 4 5
-2:2
#> [1] -2 -1 0 1 2

Q: What happens here?

1:2+1

A:The colon operator has precedence over other
operations!

#> [1] 2 3

Regular vectors: :

33 / 142

Use rep() to replicate values or vectors:

rep(1, 3) # identical to rep(x = 1, times = 3)
#> [1] 1 1 1
rep(1:2, 3)
#> [1] 1 2 1 2 1 2

You can use rep 's argument each :

rep(1:2, each = 3)
#> [1] 1 1 1 2 2 2

Argument times can be a vector of the same length as argument
x :

rep(1:2, 2:3)
#> [1] 1 1 2 2 2

Regular vectors: rep()

34 / 142

Use seq() to create regular sequences:

seq(1, 5, 1) # identical to seq(from = 1, to = 5, by = 1)
#> [1] 1 2 3 4 5
seq(1, 5, by = 2)
#> [1] 1 3 5

Say you want to create a vector from 1 to 5 with 7 equidistant points,
use argument length.out :

seq(1, 5, length.out = 7)
#> [1] 1.000000 1.666667 2.333333 3.000000 3.666667 4.333333 5.0000

Regular vectors: seq()

35 / 142

Operations between scalars and vectors are term to term:

x = 1:3
x + 1
#> [1] 2 3 4
x * 2
#> [1] 2 4 6
x**3 # equivalent to x^3
#> [1] 1 8 27
log(x)
#> [1] 0.0000000 0.6931472 1.0986123

Operations between vectors are also term to term:

y = 10**(1:3) # equivalent to y = c(10, 100, 1000)
x + y
#> [1] 11 102 1003
x * y
#> [1] 10 200 3000

Operations with vectors

36 / 142

Some functions on vectors:

x = 1:4
length(x) # nber of elements of x
#> [1] 4
mean(x)
#> [1] 2.5
sd(x)
#> [1] 1.290994
var(x)
#> [1] 1.666667
sum(x)
#> [1] 10
cumsum(x) # cumulative sum
#> [1] 1 3 6 10
diff(x) # next element - current element
#> [1] 1 1 1

Operations with vectors

37 / 142

Create the following vectors:

 in two ways

Exercises: Vectors

(−2, −1, 0, 1, 2)
(1, 1.5, 2, 2.5, 3, 3.5)
(4, 4, 4, 3, 3, 2)
(3, 2, 1, 1, 2, 3)

38 / 142

Say you have a vector and you want to select specific elements from
it.

Variable represents the elements you want to select from .

The syntax is as follows (note the square brackets):

x[index]

The can be of only three types, either:

1. a vector of integers (whatever its length),
2. a vector of character strings (whatever its length),
3. a logical vector of the exact same length as .

Subsetting I

x

index x

index

x

39 / 142

Ex: You want to select the 4th and 5th elements:

x = 1:5
two types of indexes yielding the same results:
index_nb = c(4, 5)
index_logic = c(FALSE, FALSE, FALSE, TRUE, TRUE)
x[index_nb]
#> [1] 4 5
x[index_logic]
#> [1] 4 5

Subsetting: Example

40 / 142

With an index in number, you can take several times the same value
from :

x = 5:1
x[c(4, 4, 5, 1, 1)]
#> [1] 2 2 1 5 5

With a logical index, you just can't.

You can also use negative numbers to drop observations. If so, all
numbers of the index must be negative:

x[-1] # drops first element
#> [1] 4 3 2 1
x[-(3:length(x))] # drops the third to the last element
#> [1] 5 4

Subsetting

x

41 / 142

If the vector has names: then you can use a character vector as an
index:

x = 1:5
names(x) = letters[1:5]
x
#> a b c d e
#> 1 2 3 4 5
x[c("b", "b", "d")]
#> b b d
#> 2 2 4

Subsetting II: Using character strings

42 / 142

At first sight, the logical vector looks like impractical, however it is the
one you gonna use the most!

Why? Because logical operations on vectors yield logical vectors.

Subsetting

43 / 142

A logical vector is returned when you perform logical operations on a
vector.

lower than: < , lower or equal: <= , greater than: > , greater or equal:
>= , equal: == , different: !=

To combine the results of several logical operations:

AND: & (ampersand), OR: | (pipe), NOT: !

Logical operations and subsetting

44 / 142

x = 1:5
x > 2
#> [1] FALSE FALSE TRUE TRUE TRUE
x != 5
#> [1] TRUE TRUE TRUE TRUE FALSE
x > 2 & x != 5
#> [1] FALSE FALSE TRUE TRUE FALSE
!(x > 2 & x != 5)
#> [1] TRUE TRUE FALSE FALSE TRUE

Logical operations examples

45 / 142

Exercize

Use logical vectors to find an approximation of the probability that:

set.seed(1) # for replicability
x = rnorm(1000) # 1000 draws from N(0,1)
is_large = abs(x) > 3
sum(is_large) # nber of times abs(x) > 3
#> [1] 3
x[is_large] # we see the 'large' elements
#> [1] -3.008049 3.810277 3.055742

For information: , or in R terms:

2 * pnorm(-3)
#> [1] 0.002699796

Logical operations and subsetting

|x| > 3, x ∼ N(0, 1)

2 × Φ(−3) = 0.0027

46 / 142

Logicals are just 0/1-like numbers, you can use them in arithmetic
operations.

a = c(TRUE, FALSE)
a
#> [1] TRUE FALSE
a + 1 # logical is converted to numeric
#> [1] 2 1

Note on Logicals I

47 / 142

Beware: logical operations have the lowest precedence (i.e. they come
last.)

Example: we want to set the values of x to 0 if y is negative.

Question

What's the result of:

x = 1:5
y = -2:2
x * y>0

x * y>0
#> [1] FALSE FALSE FALSE TRUE TRUE

x * (y > 0)
#> [1] 0 0 0 4 5

Note on logicals II

48 / 142

The function which() returns the indexes of a logical vector which
are TRUE :

which(c(TRUE, FALSE, FALSE, TRUE))
#> [1] 1 4
set.seed(1)
x = rnorm(6)
which(x > 0)
#> [1] 2 4 5

With a pen and paper:

1. Suggest a line of code that does the same as which(x > 0) but
without using it.

2. Without using any function, create x_abs which is the absolute
value of x = -3:3 (you'll only need subsetting).

Exercises: subsetting

49 / 142

The syntax of a for loop is:

for(index in vector){
 # do stuff
 # the variable 'index' will successively take
 # each value in 'vector'
}

for(i in c("Monique", "Esteban", "Francis")){
 # cat: function used to print msg on console,
 # \n: means return to the line (otherwise
 # everything is in one line)
 cat("Hello ", i, "!\n", sep = "")
}
#> Hello Monique!
#> Hello Esteban!
#> Hello Francis!

Loop: for

50 / 142

The syntax for a while loop:

while(condition){
 # do stuff
}

i = 2
while(i <= 100){
 cat(i, "^2 = ", i^2, "\n", sep = "")
 i = i**2
}
#> 2^2 = 4
#> 4^2 = 16
#> 16^2 = 256
cat("i out of the loop is", i)
#> i out of the loop is 256

Of course, try to avoid infinite loops!

While

51 / 142

Use break to escape a loop (either for or while):

a = 5
while(TRUE){
 a_next = a^a
 if(!is.finite(a_next)){
 break
 }
 a = a_next
}
cat(a, " is finite but ", a, "^", a, " = ", a_next, sep = "")
#> 3125 is finite but 3125^3125 = Inf

Break and next

52 / 142

In a loop, to go to the next iteration, use next :

for(i in 1:100){
 if(i < 99){
 next
 }
 print(i)
}
#> [1] 99
#> [1] 100

Break and next

53 / 142

The syntax for a condition is as follows:

if(condition_1){
 # stuff
} else if(condition_2){
 # stuff
} else {
 # stuff
}

Conditions: I

54 / 142

Any condition MUST be of length 1! i.e. you cannot use logical vectors.

x = 1:5
BAD:
if(x == 1){
 # meaningless! An error will be raised.
 # (In R < 4.0.0 it only led to a warning.)
}

GOOD:
if(x[1] == 1){
 # Now it's clear what you test
}

if(any(x == 1)){
 # any() returns TRUE if there is at least
 # one TRUE in a logical vector
}

if(all(x == 1)){
 # all() returns TRUE if all the values are TRUE
}

Conditions: II

55 / 142

Say you want to test whether the 5th element of a vector is greater than
12:

if(x[5] > 12) print("ok")

Problem

If x is of length lower than 5 problem.

Solution

Use a logical and :

if(length(x) >= 5 & x[5] > 12) print("ok")

Logical operations in conditions

⇒

56 / 142

Solution Problem

if(length(x) >= 5 & x[5] > 12) print("ok")

It works, but not for the good reasons!!!!!

Question

What do you think is going to happen?

x = 1:3
if(length(x) >= 5 & stop("This has been evaluated")) print("ok")

x = 1:3
if(length(x) >= 5 & stop("This has been evaluated")) print("ok")
#> Error in eval(expr, envir, enclos): This has been evaluated

Logical operations in conditions: Short-circuit

57 / 142

Solution Problem

if(length(x) >= 5 & x[5] > 12) print("ok")

The previous code will:

1. evaluate length(x) >= 5
2. evaluate x[5] > 12
3. aggregate the two logical elements with &

This is not what we want!

Logical operations in conditions: Short-circuit

58 / 142

What do we want?

Evaluate length(x) >= 5

1. if TRUE , evaluate x[5] > 12 and return its value
2. if FALSE , return FALSE

This means that we don't want x[5] to be evaluated if the length of x is
lower than 5!

Solution (the real one)

Use logical operators with short-circuit: && and || :

if(length(x) >= 5 && x[5] > 12) print("ok")

Logical operations in conditions: Short-circuit

59 / 142

The & and | operators
1. they always evaluate left and right
2. they are vectorised

The && and || operators
1. they evaluate the right side only if needed (i.e. conditionally)
2. they accept only scalars on both sides!

Two types of logical operators

60 / 142

Question

Now knowing how & works.

Why does this produces and error:

x = 1:3
if(x[5] > 12) print("ok")
#> Error in if (x[5] > 12) print("ok"): missing value where TRUE

... but not this?

x = 1:3
if(length(x) >= 5 & x[5] > 12) print("ok")

A: It has to do with how & deals with missing values.

Conditions: Weird behavior?

61 / 142

The operator & and
NAs:

TRUE & NA
#> [1] NA
FALSE & NA
#> [1] FALSE

The operator | and
NAs:

TRUE | NA
#> [1] TRUE
FALSE | NA
#> [1] NA

Conditions: Behavior with missing values

62 / 142

Beware the behavior of NAs when subsetting!!!!

set.seed(1)
x = rnorm(8)
x[c(3, 7)] = NA
y = round(rnorm(8), 1)
y[x > 0]
#> [1] -0.3 NA 0.4 -0.6 NA 0.0

Remember that FALSE & NA leads to FALSE? You need to use is.na to
identify the NAs:

y[!is.na(x) & x > 0]
#> [1] -0.3 0.4 -0.6 0.0

Conditions: Behavior with missing values

63 / 142

NAs can be sneaky!!

Here say we generate two random variables: x along a uniform law, y
along a Normal law, and we create z , equal to y power x .

Finally, we subset y on the values taken by z .

set.seed(1)
x = runif(8)
y = round(rnorm(8), 1)
z = y ^ x
we want the y's for which z >= 0.7
y[z >= 0.7]
#> [1] 0.3 NA 0.7 0.6 NA 1.5

The right way is:

y[!is.na(z) & z >= 0.7]
#> [1] 0.3 0.7 0.6 1.5

Conditions: Behavior with missing values

64 / 142

names = c("Monique", "Esteban", "Francis")
for(i in 1:3){
 if(i == 2){
 text = "Not hello "
 } else {
 text = "Hello "
 }
 cat(text, names[i], "!\n", sep = "")
}
#> Hello Monique!
#> Not hello Esteban!
#> Hello Francis!

Conditions: Example

65 / 142

For single instruction loops and conditions, you can omit the brackets:

for(i in 1:100) if(i == 55) print("55 is reached")
#> [1] "55 is reached"

Although it looks like two operations are executed in the for loop, it is
really only one (the if).

I do NOT advise using this shorthand the code looses in clarity.

Yet useful for QnD★ stuff.

★: Quick and dirty.

Loops and conditions: comment

⇒

66 / 142

With a pen and paper:

1. Compute the mean of x = 1:5 with a loop.

2. Compute the exponential of 1 with a loop. Remind that

Use the function factorial() and go only until i = 20 .

3. Do the previous exercise without loop.

4. Discover for which integer factorial becomes infinite. Do it twice:
with a for and then a while loop.

5. Find the first divisor of 1234567 (use %% to get the rest of the
Euclidian division★).

6. Now let's apply the solutions in Rstudio.
★: ex: 14 %% 5 yields 4, 8 %% 3 yields 2.

Exercise: Loops and conditions

exp(x) =
∞

∑
i=0

.
xi

i!

67 / 142

To run current line: ctrl + enter

To comment / uncomment: ctrl + shift + c

To create sections, add "####" to the end of a comment (ex: #
Section 1 ####).

ctrl + alt + up or down: duplicates the current line

ctrl + alt + click: duplicates the cursors

Create your own macros: https://rstudio.github.io/rstudioaddins/

Random Rstudio tips

68 / 142

https://rstudio.github.io/rstudioaddins/

Matrices

To create a matrix full of ones:

matrix(data = 1, nrow = 2, ncol = 2)
#> [,1] [,2]
#> [1,] 1 1
#> [2,] 1 1

Matrices I

2 × 2

70 / 142

Let's create a matrix with numbers from 1 to 4:

matrix(1:4, 2, 2)
#> [,1] [,2]
#> [1,] 1 3
#> [2,] 2 4

R fills the matrix by columns. To fill it by row:

matrix(1:4, 2, 2, byrow = TRUE)
#> [,1] [,2]
#> [1,] 1 2
#> [2,] 3 4

Matrices II

71 / 142

You can create matrices by "binding" vectors, using functions rbind and
cbind :

rbind(1:3, 3:1) # row bind
#> [,1] [,2] [,3]
#> [1,] 1 2 3
#> [2,] 3 2 1
cbind(1:3, 3:1) # column bind
#> [,1] [,2]
#> [1,] 1 3
#> [2,] 2 2
#> [3,] 3 1
cbind(1:2, 2:1, 3:4, 4:3) # you can have any number of args
#> [,1] [,2] [,3] [,4]
#> [1,] 1 2 3 4
#> [2,] 2 1 4 3

Matrices III

72 / 142

Like for vectors, all operations are term to term:

X = matrix(1:4, 2, 2)
X + 2
#> [,1] [,2]
#> [1,] 3 5
#> [2,] 4 6
X ** 2
#> [,1] [,2]
#> [1,] 1 9
#> [2,] 4 16
exp(X)
#> [,1] [,2]
#> [1,] 2.718282 20.08554
#> [2,] 7.389056 54.59815

Matrix operations I

73 / 142

Even when you multiply by a matrix:

X = matrix(1:4, 2, 2)
Y = matrix(1, 2, 2)
X * Y
#> [,1] [,2]
#> [1,] 1 3
#> [2,] 2 4

Does vector matrix multiplication work?

Y * 1:4

Matrix operations II

×

74 / 142

Yes it works:

Y * 1:4
#> [,1] [,2]
#> [1,] 1 3
#> [2,] 2 4

Weird behavior, isn't it? When a vector multiplies a matrix, R first (kind of)
transforms the vector into a matrix of same dimensions before applying
the operation.

Here's the logic for Y * 1:4 :

1. dimension of Y is
2. 1:4 is transformed into matrix(1:4, 2, 2)
3. the following operation is performed:
Y * matrix(1:4, 2, 2)

Matrix operations III

2 × 2

75 / 142

To perform matrix multiplication, we need to use the following symbol:
"%*% "

X = matrix(1:4, 2, 2)
Y = matrix(1, 2, 2)
X %*% Y
#> [,1] [,2]
#> [1,] 4 4
#> [2,] 6 6
X %*% (1:2)
#> [,1]
#> [1,] 7
#> [2,] 10

Now the vector MUST be of the appropriate dimensions:

X %*% 1:4
#> Error in X %*% 1:4: non-conformable arguments

Matrix operations IV

76 / 142

To transpose a matrix: t(X)
to get , crossprod(X) is faster than t(X) %*% X
to get , tcrossprod(X) is faster than X %*% t(X)
to get : solve(X)
to get the sum of each line: rowSums(X)
to get the sum of each column: colSums(X)
to get the dimension of a matrix: dim(X)
to get the nber of rows (columns) of a matrix: nrow() (ncol())

Matrix operations V

X ′X

XX ′

X−1

77 / 142

1. Generate data (100 points) according to the following relation:

2. Estimate the coefficients of the constant and of . Recall that:

Main problem - OLS regression

yi = 2 + 5xi + ϵi xi ∼ N(0, 1) ϵi ∼ N(0, 1)

x

β̂ = (X ′X)−1X ′Y

78 / 142

Uniform distribution: runif(n)
Normal distribution: rnorm(n)
Other distributions: ?Distributions
Integers: sample(n, k, replace = TRUE) draw numbers among

 with replacement.
To replicate random number creation: set.seed(m) , with a
number (when you launch R, default is roughly like
set.seed(Sys.time()) , so that everytime the seed will be
different.)

Random number generation (briefly)

k

n

m

79 / 142

R major pitfall: recycling

What happens if I do:

x = 1:5
x[c(TRUE, FALSE)]

#> [1] 1 3 5

It works! yet it's not good news...

Explanation

If an operation requires a vector of length and you give a vector of
length , R tries hard to make the second vector match length
, so that the operation works.

Basically, it usually replicates the vector until it fits.

DANGER

You may not notice mistakes!

!!!! Recycling !!!!

n

m < n n

81 / 142

rep(1, 6) + 0:1

#> [1] 1 2 1 2 1 2

matrix(1:3, 3, 2)

#> [,1] [,2]
#> [1,] 1 1
#> [2,] 2 2
#> [3,] 3 3

matrix(1:3, 2, 3)

#> [,1] [,2] [,3]
#> [1,] 1 3 2
#> [2,] 2 1 3

Recycling: examples

82 / 142

matrix(1, 2, 2) + 0:1

#> [,1] [,2]
#> [1,] 1 1
#> [2,] 2 2

matrix(1, 2, 2) + 0:2 # Now lengths don't match => warning

#> Warning in matrix(1, 2, 2) + 0:2: longer object length is not a multiple of
#> shorter object length
#> [,1] [,2]
#> [1,] 1 3
#> [2,] 2 1

Recycling: more examples

83 / 142

Back to matrices

Three ways to extract subsets of a matrix:

1. X[index_row, index_column] yields a matrix
2. X[index_vector] yields a vector
3. X[index_matrix] yields a vector

Subsetting matrices

⇒
⇒
⇒

85 / 142

Both indexes index_row and index_column are similar to vector
indexes: they can either be logical or numeric (or character).

Leaving an index empty means all rows/columns.

X = matrix(1:9, 3, 3, byrow = TRUE)
X[1, 2:3] # 1st line, two last columns => 1x2 mat.
#> [1] 2 3
simplified by R to a vector
X[c(1,3), 2:3] # 1st & 3rd lines, two last cols => 2x2 mat.
#> [,1] [,2]
#> [1,] 2 3
#> [2,] 8 9
X[1,] # 1st line, all columns
#> [1] 1 2 3
X[X[, 1] <= 4,] # all lines such that 1st element <= 4
#> [,1] [,2] [,3]
#> [1,] 1 2 3
#> [2,] 4 5 6

Subs. mat.: row & col indexes

86 / 142

You can use a logical/numeric vector going through all the elements of
a matrix:

X = matrix(1:9, 3, 3, byrow = TRUE)
X[X<5]
#> [1] 1 4 2 3
X[5] # the 5th element of the matrix
#> [1] 5

Logic? The matrix is ex ante transformed into a vector, then the
subsetting is done.

Here is an example of what it does:

1. X_tmp = as.vector(X)
2. X_tmp[X_tmp < 5]

Subsetting matrices: Using vector indexes

87 / 142

Sub-setting with a matrix index (index_matrix).

index_matrix :

1. must be a two columns matrix
2. must contain only integers
3. each row refers to a matrix cell

X = matrix(1:9, 3, 3, byrow = TRUE)
getting the diagonal:
index_matrix = cbind(1:3, 1:3) # 2 column matrix
X[index_matrix]
#> [1] 1 5 9
getting the other diagonal
X[cbind(1:3, 3:1)]
#> [1] 3 5 7

Subsetting matrices: Using matrix indexes

88 / 142

Question

What is the type of y :

x = matrix(1:4, 2, 2)
y = x[, 1]
class(y)

#> [1] "integer"

It's a vector!

Subsets of matrices leading to something of dimension 1 (either row or
column) lead to a conversion to vector. It may not be what you want!

Matrix: Beware the default!

89 / 142

And the help-page explaining this default behavior is super hard to find!

You need to type: ?"[" .

There you find the solution:

x = matrix(1:4, 2, 2)
y = x[, 1, drop = FALSE]
class(y)
#> [1] "matrix" "array"
class(x[, 1])
#> [1] "integer"

Matrix: Beware the default!

90 / 142

Let be the matrix such that .

We want to create such that , with the average of
the kth column of .

1. Create in at least two ways.
2. Compute the column means in three ways: i) colSums() , ii) matrix

multiplication, iii) colMeans()
3. Compute .

Exercise: recycling

X 10 × 4 Xik = i × k

~
X

~
Xik = Xik − X̄k X̄k

X

X

~
X

91 / 142

Lists

List are (sort of) vectors of objects that can be of any type.

a = list(1:5, c("je", "dors"), matrix(1:4, 2, 2))
a
#> [[1]]
#> [1] 1 2 3 4 5
#>
#> [[2]]
#> [1] "je" "dors"
#>
#> [[3]]
#> [,1] [,2]
#> [1,] 1 3
#> [2,] 2 4

As we can see the list named a contains three elements: a numeric
vector, a character vector and a matrix.

Lists I

93 / 142

You can give names to the elements of a list makes it clearer:

a = list(vec = 1:5, charvec = c("je", "dors"),
 mat = matrix(1:4, 2, 2))
a
#> $vec
#> [1] 1 2 3 4 5
#>
#> $charvec
#> [1] "je" "dors"
#>
#> $mat
#> [,1] [,2]
#> [1,] 1 3
#> [2,] 2 4

Lists II

⇒

94 / 142

A list is not a vector. (Sorry for the pleonasm.)

You cannot perform regular operations with lists.
Why? Because it does not make sense.

a = list(1:5) # list made of just one vector
a * 2 # Error!
#> Error in a * 2: non-numeric argument to binary operator

Lists III

95 / 142

To add an element to an existing list:

a = list() # empty list
a$x = 1:5 # create the first element named x
a[["y"]] = 2 # creates a 2nd element named y
a[[3]] = 66 # creates a 3rd element NOT named

Note that a$x is exactly equivalent to a[["x"]] = 1:5 .

Lists IV

96 / 142

Two ways to extract elements from a list:

1. Methods returning a list:

1. a[index_vector] it always returns a list

2. Methods extracting one single element from a list:

1. a[[index_or_name]]
2. a$name

Subsetting lists

⇒

97 / 142

a = list(numvec = 1:5, charvec = c("bon", "jour"))
a[1:2] # a list
#> $numvec
#> [1] 1 2 3 4 5
#>
#> $charvec
#> [1] "bon" "jour"
a[c(FALSE, TRUE)]
#> $charvec
#> [1] "bon" "jour"
a["charvec"] # still a list
#> $charvec
#> [1] "bon" "jour"
a["numvec"] * 2 # it's a list => error is raised
#> Error in a["numvec"] * 2: non-numeric argument to binary operato

Subsetting lists: Single square bracket method

98 / 142

Now assume you want to extract single elements to perform some
operations with them:

a = list(numvec = 1:5, charvec = c("bon", "jour"))
a[["numvec"]] * 2 # we use the vector -- and not the list
#> [1] 2 4 6 8 10
a$numvec # other way
#> [1] 1 2 3 4 5
a[[1]] # yet another
#> [1] 1 2 3 4 5

Note

When a list doesn't have names, you must use numeric/logical
subsets.

Subsetting lists: Single elements

99 / 142

data.frame

So far we've seen only vectors, matrices and lists.

Matrices are good for doing numeric applications, yet they only accept
numeric data.

Lists are interesting but their content can be too heterogeneous.

What can we use for data analysis?

Limitation of matrices for data

101 / 142

A data frame is:

1. a list of vectors, all of the same length
2. the vectors can be of any type

It's a table of a given number of rows, each column being of a specific
type.

data(iris) # internal R data used for examples
head(iris, 3) # first 3 rows
#> Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#> 1 5.1 3.5 1.4 0.2 setosa
#> 2 4.9 3.0 1.4 0.2 setosa
#> 3 4.7 3.2 1.3 0.2 setosa
class(iris) # data.frame indeed
#> [1] "data.frame"
dim(iris) # dimension of the data
#> [1] 150 5

Data frames

102 / 142

You can create data frames with... data.frame :

data.frame(id = 1:3, name = c("John", "Mary", "Tim"))
#> id name
#> 1 1 John
#> 2 2 Mary
#> 3 3 Tim

Data frames: creation

103 / 142

To get general information on the variables of a data.frame , you can
use the function summary :

summary(iris)
#> Sepal.Length Sepal.Width Petal.Length Petal.Width
#> Min. :4.300 Min. :2.000 Min. :1.000 Min. :0.100
#> 1st Qu.:5.100 1st Qu.:2.800 1st Qu.:1.600 1st Qu.:0.300
#> Median :5.800 Median :3.000 Median :4.350 Median :1.300
#> Mean :5.843 Mean :3.057 Mean :3.758 Mean :1.199
#> 3rd Qu.:6.400 3rd Qu.:3.300 3rd Qu.:5.100 3rd Qu.:1.800
#> Max. :7.900 Max. :4.400 Max. :6.900 Max. :2.500
#> Species
#> setosa :50
#> versicolor:50
#> virginica :50
#>
#>
#>

Data.frames: General information

104 / 142

The function head still works:

head(iris)
#> Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#> 1 5.1 3.5 1.4 0.2 setosa
#> 2 4.9 3.0 1.4 0.2 setosa
#> 3 4.7 3.2 1.3 0.2 setosa
#> 4 4.6 3.1 1.5 0.2 setosa
#> 5 5.0 3.6 1.4 0.2 setosa
#> 6 5.4 3.9 1.7 0.4 setosa

Data.frames: General information

105 / 142

Data frames are a special beast.

They can be subsetted either like lists, either like matrices.

Subsetting data.frames

106 / 142

iris[1:2, 2:3]
#> Sepal.Width Petal.Length
#> 1 3.5 1.4
#> 2 3.0 1.4
iris[2:3, c("Sepal.Length", "Species")]
#> Sepal.Length Species
#> 2 4.9 setosa
#> 3 4.7 setosa

Subsetting data.frames: like matrices

107 / 142

head(iris[1], 2) # single square bracket: DF is returned
#> Sepal.Length
#> 1 5.1
#> 2 4.9
head(iris[[1]]) # vector is returned
#> [1] 5.1 4.9 4.7 4.6 5.0 5.4
head(iris[["Sepal.Length"]]) # vector is returned
#> [1] 5.1 4.9 4.7 4.6 5.0 5.4
head(iris$Sepal.Length) # vector is returned
#> [1] 5.1 4.9 4.7 4.6 5.0 5.4

Subsetting data.frames: like lists

108 / 142

As for matrices, if the subset of a data.frame leads to something of
dimension 1, it is simplified into a vector.

You need to use the (hidden) argument drop to change the behavior:

class(iris[, 1])
#> [1] "numeric"

class(iris[, 1, drop = FALSE])
#> [1] "data.frame"

Subsetting: Beware the default!

109 / 142

A data.frame must have column names. To both access it and set it, use
names() .

df = iris
names(df)
#> [1] "Sepal.Length" "Sepal.Width" "Petal.Length" "Petal.Width"
names(df) = 1:ncol(df)
names(df)
#> [1] "1" "2" "3" "4" "5"

To access column names in a matrix, use colnames() .

Column and row names of a data.frame

110 / 142

To access and set the row names of a data.frame, use row.names() :

df = data.frame(age = c(32, 12, 27), other = 3:1)
row.names(df) = c("Lara", "Julia", "Paul")
df["Paul",]
#> age other
#> Paul 27 1

To access row names in matrices, use rownames() (no dot!).

Row names of a data.frame

111 / 142

df = data.frame(name = c("Lara", "Julia", "Paul"),
 age = c(32, 12, 27))
df$young = df$age <= 18
initialize the variable with some value
df$ageSq_if_young = df$age
modify it conditionnaly
df$ageSq_if_young[df$young] = df$age[df$young] ** 2
Delete variable:
df$age = NULL

Creation of new variables

112 / 142

Use the function apply() to apply a function to the rows/columns of a
matrix/data.frame.

MARGIN: 1: row, 2:column
apply(iris[, 1:4], MARGIN = 2, FUN = median) # get the median for 4
#> Sepal.Length Sepal.Width Petal.Length Petal.Width
#> 5.80 3.00 4.35 1.30

head(apply(iris[, 1:4], 1, max)) # max value for each obs
#> [1] 5.1 4.9 4.7 4.6 5.0 5.4

Apply function to DFs

113 / 142

R pitfall: factor variables

In your R programming journey, you may encounter a strange creature:
factors.

class(iris$Species)
#> [1] "factor"
head(iris$Species)
#> [1] setosa setosa setosa setosa setosa setosa
#> Levels: setosa versicolor virginica

Factors are in fact a way to encode categorical data:

they look like character but are in fact integers

they're weird!

Factor variables

115 / 142

DANGER

In R 4.0.0 , when creating a data.frame , the default of argument
stringsAsFactors is TRUE !

Back in the days (check your R version!) upon the creation of a DF,
character vectors are converted to factors:

df = data.frame(name = c("Lara", "Julia", "Paul"),
 age = c(32, 12, 27), stringsAsFactors = TRUE)
df$name
#> [1] Lara Julia Paul
#> Levels: Julia Lara Paul
class(df$name)
#> [1] "factor"

Factors and data.frames: Beware the R version

<

116 / 142

Illustration of the problem:

df = data.frame(name = c("Lara", "Julia", "Paul"),
 stringsAsFactors = TRUE)
age = c(Lara = 32, Julia = 12, Paul = 27) # named vector

What does the following yields?

df$age = age[df$name]
df

#> name age
#> 1 Lara 12
#> 2 Julia 32
#> 3 Paul 27

WTF???

Factor variables II

117 / 142

Why this behavior? Because factors are treated as integers!

Here's a sketch of what's done to the character variable df$name :

1. name_sorted_unik = sort(unique(df$name))
2. dict = 1:length(name_sorted_unik)
3. names(dict) = name_sorted_unik
4. df$name = dict[df$name]

unclass(df$name) # integers reflect the "character" order
#> [1] 2 1 3
#> attr(,"levels")
#> [1] "Julia" "Lara" "Paul"

Factor variables III

118 / 142

To have the appropriate result:

df$age = age[as.character(df$name)]
df # we had to reconvert into character
#> name age
#> 1 Lara 32
#> 2 Julia 12
#> 3 Paul 27

Factor variables can be useful in some context (we'll see when later).

Factor variables IV

119 / 142

Functions

Think functions.

Why thinking functions? If you have a piece of code that you use at
least twice, it is worth making a function out of it so that the next
time, you just use one line of code. Direct productivity gain.

Big strenght of R: very easy to create flexible functions. Cost of
making functions is low.

Even if you think the problem you're dealing with is specific, try to see
it as a special case of a broader context.

This way, you'll be able to create a broad function that'll be able to
deal with your specific problem but also many others.

One drawback is that making broad functions requires abstract
thinking. Yet it's usually worth the investment.

Functions, a philosophy

121 / 142

A function is just a set of instructions applied to objects given in input.

To create a function, the structure is as follows:

functionName = function(arg1, arg2){
 # the instructions to perform
 return(output) # the stuff to be returned
}

Function syntax I

122 / 142

To lighten notation, R allows you to avoid the use of return() to return
something from a function.

By default, the last element of a function is returned.

add1 = function(x){
 res = x + 1
 return(res) # return(x + 1) also works
}
add1_bis = function(x){
 x + 1
}
add1(1)
#> [1] 2
add1_bis(1)
#> [1] 2

Function syntax II

123 / 142

If the function bumps into a return() , it stops right away and returns
the object:

test = function(x){
 return(1)
 return(2)
 return(3)
}
test()
#> [1] 1

Function syntax III

124 / 142

You can write functions with only one instruction in one line (no need of
brackets):

add1_ter = function(x) x + 1
add1_ter(2)
#> [1] 3

Function syntax VI

125 / 142

You can add default values to the arguments:

funName = function(arg1 = default1, arg2 = default2, arg3){
 # here arg1 and arg2 have default values
}

add1_quar = function(x = 0) x + 1
add1_quar()
#> [1] 1

Function syntax: Arguments

126 / 142

Arguments need not be used in the function:

happy = function(x, y, z){
 print("I'm happy.")
}
happy()
#> [1] "I'm happy."
happy("I", "am not", "happy") # yields same result
#> [1] "I'm happy."

In the happy() function, no error is raised: although missing, arguments
, and are not used.

When an argument is missing and used an error will be raised:

funSquare = function(x) x**2
funSquare(2) # works
#> [1] 4
funSquare() # x is missing and used! Error
#> Error in funSquare(): argument "x" is missing, with no default

Function syntax: Arguments

x y z

⇒

127 / 142

1. Create myCov(X) , a function to compute the covariance of a matrix
. Remind that:

Apply it to X = cbind(rnorm(100, sd = 2), rnorm(100, sd =
10)) .

2. Create myOLS(y, x) , a function that returns the coef. of an OLS
estimation of vector on vector .

Exercises: Function

X

V (X) =
~
X

′ ~
X,

~
Xik = Xik − X̄k

1

n − 1

x y

128 / 142

You have a special argument called dot dot dot: ...
Extremely versatile and useful
R specific

Function dot dot dot

129 / 142

showDot = function(...){
 dots = list(...)
 print(dots)
}
showDot(arg1 = 1:5, "test stuff",
 b = "another", list(test_still = 2))
#> $arg1
#> [1] 1 2 3 4 5
#>
#> [[2]]
#> [1] "test stuff"
#>
#> $b
#> [1] "another"
#>
#> [[4]]
#> [[4]]$test_still
#> [1] 2

What's ...?

130 / 142

you can access an unlimited number of arguments via the ... !
it puts all these arguments into a named list

OK but what's the point?
it's powerful
very powerful

What's ...?

131 / 142

plotCor = function(x, y){
 # linear regression
 reg = lm(y ~ x)
 # plotting the correlation...
 plot(x, y)
 # with the fit
 abline(reg)
}

Example ...

132 / 142

plotCor(iris$Sepal.Length, iris$Sepal.Width)

Example ...

133 / 142

What if I want:

to change the limits of the plot?
change the color of the points?
Change the axis labels?

change other stuff??

you can't.

Example ... II

134 / 142

plotCor = function(x, y, ...){
 # linear regression
 reg = lm(y ~ x)
 # plotting the correlation...
 plot(x, y, ...)
 # with the fit
 abline(reg)
}

Example ...

135 / 142

plotCor(iris$Sepal.Length, iris$Sepal.Width,
 col = iris$Species, xlab = "Sepal.Width")

Example ...

136 / 142

How does it work?

all arguments that are NOT plotCor() arguments are gathered in
... and passed on to the plot function

in the example, the plot performed in the function is:
plot(x, y, col = iris$Species, xlab = "Sepal.Width")

allows to create flexible functions, with a lightweight syntax

How does ... work?

137 / 142

x = 5
f1 = function() print(x)

Does it work?
f1()
#> [1] 5

#> [1] 5

when R doesn't find a variable in a function, it goes on top of it to find
it.

in the context of f1() , x is a global variable.

Understanding functions: Namespaces

138 / 142

x = 1
f1 = function() print(x)

f2 = function() {
 x = 2
 f1()
}

f3 = function(){
 x = 3
 f4 = function() print(x)
 f4()
}

f1()
#> [1] 1
f2()
#> [1] 1
f3()
#> [1] 3

R looks up in the stack where the function was defined.

Understanding functions: Namespaces

139 / 142

The functions lapply() and sapply() are very handy, you should have
them in your toolbox.

loops over each element of X and apply a function to it:
lapply(X = iris[, c(1, 5)], FUN = class)
#> $Sepal.Length
#> [1] "numeric"
#>
#> $Species
#> [1] "factor"
sapply is the same but coerce the result into a vector:
sapply(iris[, c(1, 5)], class)
#> Sepal.Length Species
#> "numeric" "factor"

lapply and sapply

140 / 142

Let's numerically compute the probability that when
for varying number of observations: 10, 20, 30, 40, etc, 100.

1. Exercise: Do it using a loop.
2. With sapply:

myfun = function(n) mean(rnorm(n) > 0)
sapply(10 * 1:10, myfun)
#> [1] 0.6000000 0.3500000 0.6000000 0.5500000 0.2800000 0.5166667
#> [8] 0.5250000 0.4222222 0.4900000

Why are they useful? I

x > 0 x ∼ N(0, 1)

141 / 142

Now let's get the variance of the results for 100 repetitions of the
experiment:

myfun = function(n, nRepeat){
 var(replicate(nRepeat, mean(rnorm(n) > 0)))
}
sapply(10 * 1:10, myfun, nRepeat = 100)
#> [1] 0.027485859 0.013802020 0.008594725 0.005618434 0.005365657
#> [7] 0.003145970 0.002894003 0.002501359 0.003228071

Why are they useful? II

142 / 142

